
International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 3, Issue 3, December (2015) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 78

Storing of Unstructured data into MongoDB using

Consistent Hashing Algorithm

Saranraj Sankarapandi

PG Scholar, IIIT-Srirangam, Tiruchirapalli, Tamilnadu, India.

Dr.M. Sai Baba

Associate Director, RMG, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamilnadu, India.

S.Jayanthi

Assistant Professor,Department of Computer Science & Engineering,Anna University, BIT Campus

Tiruchirapalli, Tamilnadu, India.

E.Soundararajan

Scientific Officer/E,SIRD,Indira Gandhi Centre for Atomic Research,Kalpakkam, Tamilnadu, India.

Abstract — In the modern world network users or internet users

are increasing incredibly day by day because of that more and

more unstructured data’s are producing and consuming over the

network. And how to maintain those data and improve the

availability and scalability of the storage system becomes a

considerable challenge. Nowadays some of the NoSQL databases

are supported the unstructured data management and provide

different advantages for the unstructured data management e.g.

CassandraDB, CoughDB, MongoDB, DynamoDB etc. MongoDB

that is providing the most flexible query functions for the

unstructured data management compared to the other databases

like Dynamo Db, Cassandra DB. The main objective of this paper

is to store a large amount of unstructured data into the MongoDB

with using the Consistent hashing algorithm. The consistent

hashing algorithm is one of the algorithm for the storing the

documents into the database using the consistent hash ring.

Index Terms — MongoDB, Unstructured data, NoSql, Storage,

Consistent hashing algorithm

1. INTRODUCTION

A relational database is broadly used the database application

to storing and retrieving data. Managing a large amount of data

like the internet was incompetent in RDBMS. To conquer this

problem, NOSQL comes into reality. The term NOSQL is short

for Not Only SQL and was introduced in 2009. The name

attempt to tag the appearance of a mounting number of non-

relational, distributed data storage that frequently did not

attempt to give ACID. NOSQL is not an instrument, but a

methodology collected of numerous corresponding and

challenging tool. The main advantage of the NOSQL database

is that dissimilar to the relational database they hold

unstructured data such as documents, e-mail, multimedia and

social media proficiently. Most of the familiar features of

NOSQL database can be summarized a schema is not

predetermined, does not support join operations, high

scalability and reliability, very simple data model, very simple

query language and high availability. There are many benefits

of NoSQL as compared to RDBMs, but also there are many

obstacles to overcome before they can appeal to conventional

enterprises. Few of the challenge and improvement which

means RDBMs systems are stable and abundantly functional

whereas NoSQL is in pre-production versions with many key

features are yet to be implemented, Support, Administration

and NoSQL database is still in learning mode. There is three

category of NoSQL data model, a) Key- Value stores; in this a

value corresponds to a key and data are stored as a key-value

pairs. E.g.Redis b) Column-Oriented stores in this database

contain one extendable column of directly related data and use

a table as the data model but do not support table relationship.

E.g. Cassandra, HBase c) Document oriented stores in this data

are stored and organized as a collection of document, but the

value of a document database is stored in JSON or XML

format. E.g. MongoDB, CouchDB. MongoDB is a document-

oriented database developed by 10gen. It manages a collection

of JSON documents. With the rapid development of the social

web as well as cloud computing, the traditional database cannot

manage with the basic demands of availability, scalability,

storage of enormous data and fast data backup and recovery.

Currently, NoSQL database is used by the developer for storing

a large amount of database. The most NoSQL systems occupy

a distributed architecture, with the data detained in a redundant

manner on several servers, and partitioning scheme believes on

consistent hashing to distribute the load across multiple storage

hosts.

Unstructured data is a general label for recitation data that is

not enclosed in a database or some other type of data structure.

Unstructured data can be textual or non-textual. Textual

unstructured data is generated in media like e-mail messages,

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 3, Issue 3, December (2015) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 79

power point presentations, word documents, collaboration

software and instant messages. Non-textual unstructured data

generated in media like JPEG images, MP3 audio files and

Flash video files. If left unmanaged, the absolute volume of

unstructured data that’s generated each year within a venture

can be expensive in terms of storage. Unmanaged data can also

cause a responsibility if information cannot be located in the

event of an observance or proceedings. The information

enclosed in unstructured data is not constantly easy to find. It

requires that data in both electronic and hard copy documents

and other media be scanned so a search application

can parse out a concept based on words used in unambiguous

context this is called semantic search.

2. OVERVIEW OF MONGODB

2.1 MONGODB

MongoDB is the schemaless document-oriented database. The

name Mongo DB comes from the name “humongous”. The

database is proposed to be scalable and is written in C++. The

main reason for moving away from a relational model is to

make scaling easier. MongoDB is also schema - free a

document key are not predefined or fixed.

2.1.1 Features:

MongoDB support BSON(Binary JSON) data structures to

store complex data types and also supports complex query

language. It gives the high-speed admittance to store the mass

data. It should stores and distribute large binary files like

images and videos and instead of stored procedures,

developers can store and use JavaScript functions and values

on the server side. Then it supports an easy-to-use protocol for

storing large files and it gives a fast serial performance for

single clients. And the MongoDB uses memory mapped files

system for the faster performance.

2.2.2 Data Design:

MongoDB database holds a set of collections and a collection

has no pre-defined schema like tables, and stores data as

documents. BSON (binary JSON) are used to store documents.

A document is a set of fields and can be thought of as a row in

a collection. It can hold complex structures such as lists and a

document. Each document have the ID field, that is used as a

primary key and each collection can hold any kind of

document, but queries and indexes can only be made against

one collection. MongoDB has supported the indexing over

embedded objects and arrays thus have a special feature for

arrays called “multi-keys”. That feature is allows using the

array as an index, that can be used to search documents by their

linked tags. Figure1 shows the structure of MongoDB and

completely explaining the MongoDB how it is working and

gives the full architecture of the document – oriented data store.

Figure 1: Structure of MongoDB

2.2.3 Query Language:

MongoDB has its own query language named Mongo Query

Language and to retrieve certain documents from a database

collection, thus the query document is created containing the

fields that the preferred documents should match. For example,

2.2.4 Application:

MongoDB is using the RESTful (Representational State

Transfer) Application protocol interface (API). It is the

architecture style for designing networked applications. It is

contains the stateless, client-server, cacheable communications

protocol (e.g., the HTTP protocol). A rESTful application

using the HTTP requests to post read data and deletes the data.

2.2.5 Architecture:

MongoDB cluster is built up using three main components

namely Shard nodes, Configuration servers and Routing

services or mongos as shown in Figure 2. Shard nodes: A

MongoDB cluster it should containing one or more shards, and

the each shard node is dependable for storing the real data into

the database. Each of the shard is consists of either one node or

a replicated node which just hold data for that shard. Read and

write queries are a retreat to the appropriate shards. A

replicated node contains one or more servers, where one of the

server is acting as a primary server and others servers

secondary servers. If the primary server will fail one of the

secondary servers automatically takes over as primary. All

http://whatis.techtarget.com/definition/parse
http://whatis.techtarget.com/definition/semantics

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 3, Issue 3, December (2015) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 80

write and reliable reads go to the primary server and all

eventually consistent reads are distributed among all the

secondary servers.

Figure 2: MongoDB Architecture

3. RELATED WORK AND ARCHITECTURE OF THE

UNSTRUCTURED DATA STORAGE

3.1 Related Work

MongoDB is providing the more and more confidence to do the

work because that database it is containing the lots of methods

to store the data’s into the database eg. GridFS technology,

NodeJS and Replica set technology etc. In the previous work

they are trying to store a large amount of data into the

MongoDB database but they had met some problem and they

did not successfully store the data into the MongoDB database.

The previous work they had chosen the clustering technology

to store the data into the database but they successfully did the

clustering but the clustered node storage is not supported by the

MongoDB and its supporting clustering after the data storage

inside into the database. In this paper I have created the one

new temporary data storage that is called as the store data

storage that is the temporary storage only. Consisting hashing

algorithm is using this project for the storage of the

unstructured data into the MongoDB database.

Thus the consisting hashing algorithm is very useful to store

the large amount of unstructured data into the MongoDB

database. The Consistent hashing aim is to provide a uniform

data sharding around the cluster with the least data lose. And

the pseudo code is given in the fig.4.

3.2 Architecture Diagram

The architecture diagram is clearly explaining about the

unstructured data storage into the MongoDB database. In the

first step we will extract the unstructured data from the data

source. After collecting the unstructured data we are going to

do the categorization process in the second step. In the

categorization process we are categorizing the unstructured

data, in this step what I am going to do means splitting the

unstructured data with the category of files means if .pdf, .mp3,

.mp4 etc files are splited by the category using the parsers.

Then the third step after the categorization is store the large

amount of the unstructured data into the temporary data storage

that the temporary data storage is called as MyStore data store.

And then finally we will store the unstructured data from the

MyStore data storage. Figure 3 explains the clear process of

the unstructured data into the MongoDB database.

The main idea is to hash both data ids and cache-machines to a

numeric range using the same hash-function. E.g. in Java a

primitive type int has a number range of values between -231

to 231-1. Assume the interval is [0, 231-1] for simplicity (java

primitives cannot be unsigned). Now let’s join starting and

ending points together of this interval to create a ring so the

values wrap around. We do not have 231 -1 available servers,

the large size of the ring being merely intended to avoid

collisions. As a hash function a good choice is either be e.g.

MD5 or SHA-1 algorithm. As a machine’s number we can take

its IP-address and apply that hash function to it. By taking from

the result the first 8 bytes we can map it to our ring [0,231-1].

Both the nodes and the keys are mapped to the same range on

the ring. Ok, now we need to understand how to identify on this

ring which data ids belong to which server’s IP. It’s really

simple, we just move clockwise starting from zero (starting

point on the ring) following the main rule of consistent hashing:

If IP-n1 and IP-n2 are 2 adjacent nodes on the ring all data ids

on the ring between them belong to IP-n1.

Figure: 3 Architecture Diagram

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 3, Issue 3, December (2015) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 81

That’s it. Using consistent hashing we do not need to rehash

the whole data set. Instead, the new server takes place at a

position determined by the hash value on the ring, and part of

the objects stored on its successor must be moved. The

reorganization is local, as all the other nodes remain

unaffected. if you add a machine to the cluster, only the data

that needs to live on that machine is moved there; all the other

data stays where it is. Because the hash function remains

unaffected, the scheme maintains its consistency over the

successive evolutions of the network configuration. Like naive

hashing, consistent hashing spreads the distributed dictionary

almost evenly across the cluster. One point to mention is what

happens when a node goes down due to some disaster. In this

case consistent hashing alone doesn’t meet our requirements of

reliability due to loss of data. Therefore there should definitely

be replication and high availability which is feasible and out of

scope of this introduction. You may want to find good

references at the end of this article to find out more.

Figure 4: Consistent hashing

Consistent hashing allows you to scale up and down easier, and

makes ensuring availability easier. Easier ways to replicate data

allows for better availability and fault-tolerance. Easier ways

to reshuffle data when nodes come and go means simpler ways

to scale up and down.It's an ingenious invention, one that has

had a great impact. Look at the likes of Memcached, Amazon's

Dynamo, Cassandra, or Riak. They all adopted consistent

hashing in one way or the other to ensure scalability and

availability. Want to know more about distributed databases in

general and Riak in particular? You'll like the Riak Handbook,

a hands-on guide full of practical examples and advice on how

to use Riak to ensure scalability and availability for your data.

In the next installment we're looking at the consequences and

implications of losing key ordering in a Riak cluster. Virtual

nodes minimize changes to a node’s assigned range by a

number of smaller ranges to a single node. In other words,

amount of data to be moved from one physical node to others

is minimized. Let’s split a real node into a number of virtual

nodes. The idea is to build equally-sized subintervals

(partitions) for each real server on the ring by dividing the hash-

space into P evenly sized partitions, and assign P/N partitions

per host. When a node joins/leaves all data from partitions of

all real servers are uniformly get assigned to a new server and

given back to remaining ones respectively. The number of

virtual nodes is picked once during building of the ring and

never changes over the lifetime of the cluster. This ensures that

each node picks equal size of data from the full data set, that is

P/N and thus our data now are distributed more uniformly. This

enforces that the number of virtual nodes must be much higher

than the number of real ones.

4. CONCLUSION

In this work, I successfully stored the large amount of

unstructured data into the MongoDB. MongoDB improve the

high availability, and high scalability to the data storage.

Consistent hashing algorithm is mainly used to store the with

low data loss. And the consistent hashing algorithm is used to

do the clustering inside into the MongoDB database. Using the

GirdFS technology the data’s should be separated into the shard

that could be splitted into the many shards. Using the consistent

hashing algorithm the data’s are clustered so the retrieving will

be very fast.. My Store dramatically improves the ability of

handling failures and the availability, scalability of the system.

I tried to store the data into the cloud using the MongoDB

storage but due to some of the problem I could not store the

unstructured data into the cloud environment.

5. FUTURE WORK

Main work to do here after creates the cloud environment using

the MongoDB ops-manager I will store the large amount of the

unstructured data into the cloud environment.

REFERENCES

[1] Gartner Inc. http://www.gartner.com/

[2] Abadi J (2009) Data management in the Cloud: limitations
andopportunities. IEEE Data Eng Bull32(1):3–12

[3] Lakshman A, Malik P (2009) Cassandra—a decentralized structured

storage system. In: Proceedings of the 3rd ACM SIGOPS international

http://memcached.org/
http://www.allthingsdistributed.com/2007/10/amazons_dynamo.html
http://www.allthingsdistributed.com/2007/10/amazons_dynamo.html
http://cassandra.apache.org/
http://basho.com/products/riak-overview/
http://riakhandbook.com/
http://www.gartner.com/

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 3, Issue 3, December (2015) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 82

workshop on large scale distributed systems and

middleware(LADIS’09). ACM, New York, pp 35–40
[4] Clarence J. M. Tauro . A Comparative Analysis of Different NoSQL

Databases on Data Model,Query Model and Replication Model. ACM

SIGOPS Operating Systems Review archive Volume 44 Issue 2, April
2010 Pages 35-40

[5] Cassandra - A Decentralized Structured Storage System In: Proceedings

of twenty-first ACM SIGOPS symposium on operating systems
principles. ACM, NewYork, pp 205–220

[6] Abhinav Tiwari (2009) Data management in the Cloud: limitations

andopportunities. IEEE Data Eng Bull32(1):3–12.
ACMTransComputSyst 26(2):1–26

[7] Lakshman A, Malik P (2009) Cassandra: structured storage system on a

p2p network. In: Proceedings of the 28th ACM symposium on Principles
of distributed computing. ACM, New York, pp 5–5

[8] Ford D, Labelle F, Popovici F (2010) Availability in globally distributed

storage systems. In: Proceedings of USENIX conference on operating

system design and imlementation (OSDI’10). USENIX,Berkeley, pp 1–

7

[9] Banker K (2011) MongoDB in action. Manning Press, USA
[10] Pritchett D (2008) BASE: an acid alternative. ACM Queue 6(3):48–55

[11] Jim G (1981) The transaction concept: virtues and limitations. In:
Proceedings of the 7th international conference on very large databases

(VLDB). IEEE, New York, pp 144–15412. Vogels W (2009) Eventually

consistent. Commun ACM 52(1):40–44

http://dl.acm.org/citation.cfm?id=J597&picked=prox&cfid=681403718&cftoken=86389493

